

WBCInno

Different ways of technology transfer at University of Alicante

Olga Francés

Contents

- University Missions
- Knowledge Transfer at UA
- Ways of KT and characteristics
- ❖ What we need to foster KT?
- Conclusions

>UNIVERSITY MISSIONS

- ➤ Teaching
- > Research
- ➤ Technology Transfer

>UNIVERSITY MISSIONS

- ➤ Teaching
- > Research

I DO NOT LIKE TECHNOLOGY TRANSFER

>UNIVERSITY MISSIONS

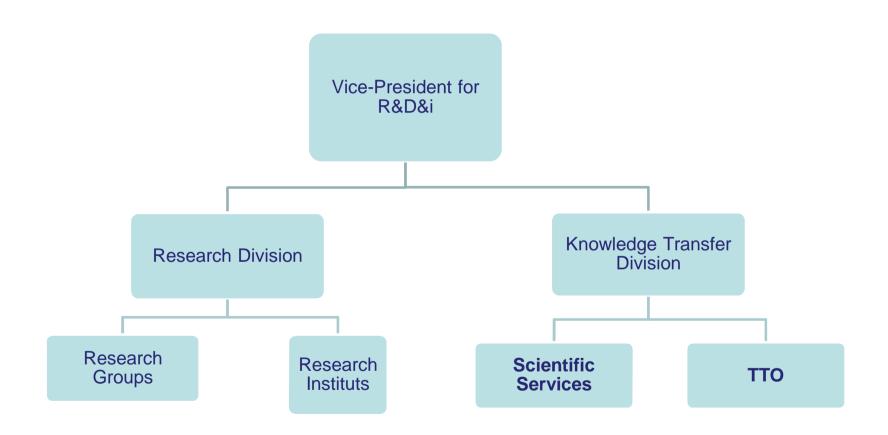
- ➤ Teaching
- > Research

I PREFER KNOWLEDGE

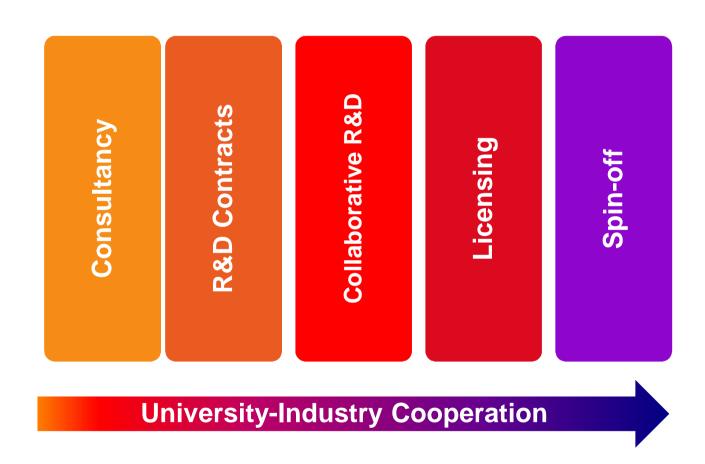
TRANSFER

> UNIVERSITY MISSIONS

- > Teaching
- > Research
- ➤ Technology Transfer (Knowledge Transfer)
 - Contracts or working on demand
 - Collaborative projects
 - Advanced KT
 - > Licenses
 - > Spin-off



Who is responsible for the KT?


- Researchers
- Technology Transfer Offices (TTOs)

Consultancy

- ➤ A company needs the University to, for example, analyse some samples of a concrete material.
 - > They talk to a researcher or a service within the University
 - Make the deal
 - Sign the contract
 - > The University analyses the samples
 - > They pay, that is the end
- > Easy, concrete, the company uses the University and that's it.
- > Not strongly linked

R&D contracts

- ➤ R&D on demand → to solve a concrete problem
- The University as the research department of a company
- Research to be carried out by the University
- No results guaranteed
- The contract should specify:
 - Obligations of both parts
 - Timing of the project
 - Budgets
 - > Payments
 - Results (future IP, future developments...normally belonging to the company)

Collaborative R&D

- Commercial & scientific goals are shared
- Research to be carried out by both parts
- Risks & benefits shared
- Contracts should specify:
 - Obligations of both parts
 - > Timing of the project, responsibles for each part of the project
 - Budgets and payments
 - ➤ Results → IP management, future developments (hot potato)
- More interaction between both parts
- Frequently closer to market

Licensing

- Not always easy to find a client
- Hard work is required
 - ➤ Tehcnology offers → market places, twitter, linkedin, websites, etc.
 - Identify the offer (what, to whom, why it's interesting)
 - Licensing terms (exclusive/non-exclusive, territory, royalties, payments, future developments, etc.)
- Post-license
 - Researchers are not involved anymore
 - ➤ The University still involved → returns → researchers
- Science is put directly into market

Spin-off

- The most effective way of transfering knowledge
- Spin-offs as a way of fostering the industry environment
 - > New sectors arise
 - > Cutting-edge technology
 - > Job creation
 - > Researchers will be more involved > team commitment
- ➤ Questions regarding conflicts of interest arise → Clear legislation
- IP management riquered
- A concrete environment needed
- Science is put directly into market

	LICENSING	SPIN-OFF
Some reasons	Financial Returns	Financial Returns
	Lack of investment or high investment required	Regional development
		The research team want
	Well identified target	a company
	Established markets and suppliers	Gov. Policies
	Short-Term	Long-Term
	The IP fits a 'gap' in someone else's portfolio	Revolutionary and/or Platform Technology

	Licensing	Spin-offs
Team	Researchers, Low implication	Researchers + sb else → balanced team; high implication
Investment (time, money, efforts) pre / post-license	Significant /Minimum	High (more time consuming, more people intensive) pre and post
Financial Returns to University	Royalties, upfront payments	Royalties, upfront payments, equities, dividends
Financial Returns to the inventors	Royalties (university policy)	Royalties (university policy) + equity gains and dividends, if so
Financial Risk	Modest	Significant

What do we need?

- High quality research
- ➤ Clear University policy → the interaction with industry within the University strategy
- ➤ A clear legislation to foster relations with industry in a simple, flexible way (national, University level)

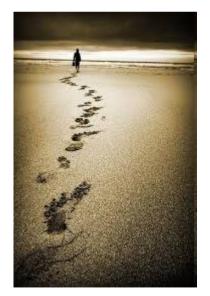
What do we need?

- > KT should have an impact on academia curriculum
- ➤ Professional structures within the Universities to promote this industry-university communication and to detect industry demands → people able to talk the same language or act as translators
- Specialized courses
- Researchers mobility between University and Industry

What else do we need?

What else do we need?

• MORE COFFEE!!!!



Why?

- > To contribute to the economic development
- Society benefits from knowledge
- > The University becomes more real
- Walking towards the entreprenurial university

....and KEEP ON WALKING

Conclusions

- A proper University environment is needed
 - Towards the entreprenurial university with clear, but flexible, policy and some support estructures such as science parks, incubations, etc.
 - Introducing technology transfer, IP issues on courses, both for students and researchers
- The University should help to create companies but should not interfere in their lifes

Conclusions

- The importance of the TEAM
 - The researchers play a very important role BUT
 - They know almost nothing about business
 - Too much stress on the technical issues
 - ➤ Conflicts of interest might arise → clear, but again flexible, rules
 - ➤ Well-balanced team →CEO with business skills, contacts and experience

Conclusions

- Regarding the TTOs
 - Must be able to detect potential projects
 - To assist the researchers
 - Have contacts in the "real" world
 - Help the team to put all the NOTES together (IP, technology,
 - investment, team, etc.)

Tempus

Thanks for your attention!

Questions?.....

Olga Francés Hernández
Alicante Science Park
Olga.frances @ua.es
@PCientificoAlic

